Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Для нормального роста и развития растениям необходимы свет, тепло, вода, воздух и питательные вещества. Все эти условия жизни для растений равноценны и незаменимы.

В почвах элементы питания растений находятся в составе минералов, органических и органо-минеральных соединений твердой фазы почв, в почвенных растворах (в основном в ионной форме) и в газовой фазе почв.

Химический состав почв

Химический состав почв

В результате поглощения питательных элементов растения формируют корневые и надземные массы, которые используются людьми как продукты питания, корм для животных или как сырье для промышленности (клубни картофеля, зерно, лен и т. д.).

В почвах содержатся практически все элементы периодической системы Д. И. Менделеева, но для питания растениям наиболее необходимы 19 элементов: С, Н, О, N, P, S, К, Са, Mg, Fe, Mn, Cu, Zn, Mo, В, CI, Na, Si, Co.

Из них 16 элементов, кроме С, Н, О, относятся к минеральным. Углерод, водород и кислород поступают в растения преимущественно в виде СО2, О2 и Н2О. Необходимость натрия, кремния и кобальта не для всех растений установлена.

Рекомендуем прочитать: Подзолистые почвы таежно-лесной зоны

Углерод, водород, кислород и азот называют органогенными элементами, так как в основном из них состоит организм растений. Углерода содержится в среднем 45 % от сухой массы тканей растений, кислорода — 42, водорода — 6,5, азота — 1,5 %. Их сумма составляет 95 %. Оставшиеся 5 % приходятся на зольные элементы: Р, S, К, Са, Mg, Fe, Si, Na и др. Они называются так потому, что преобладают в золе растений.

Химический состав золы является показателем валового количества усвоенных растениями из почвы зольных элементов питания. Их выражают в оксидах или в элементах по отношению к массе сухого вещества, или к массе золы в процентах.

Валовой химический состав растений значительно отличается от валового состава почвы вследствие избирательности растений к поглощению отдельных элементов для формирования урожая (табл. 12). В растениях всегда больше азота, фосфора и калия.

12. Валовой химический состав пахотных горизонтов почв (% на прокаленную навеску) в сравнении с зольным составом растений (% на золу)

Почва, растение

SiO2

Fe203

CaO

MgO

P2О5

K2О

Na2О

Автор

Дерново-среднеподзолистая среднесуглинистая

70,2

4,9

1,4

1,1

0,2

1,8

1,6

В. П. Ковриго
Серая лесная оподзоленная тяжелосуглинистая

69,1

5,0

1,5

1,4

0,2

2,0

1,4

В. П. Ковриго
Чернозем типичный тяжелосуглинистый

79,0

4,3

2,0

1,1

0,4

2,3

0,8

Е.А.Афанасьева
Картофель (клубни)

2,1

1,1

2,6

4,9

16,9

60,0

3,0

Н.А.Максимов
Пшеница:

     семена

0,7

0,6

3,5

13,2

47,9

30,2

0,6

Н.А.Максимов
     стебли и листья

67,4

0,6

5,8

2,5

4,8

13,6

1,4

Н.А.Максимов
Лен:

     семена

0,9

1,1

9,6

15,8

42,5

26,7

2,2

Н.А.Максимов
     стебли и листья

6,7

3,7

24,8

15,0

6,2

34,1

4,4

Н.А.Максимов

 

В естественных биоценозах питательные элементы, усвоенные растениями и другими живыми организмами, снова возвращаются в почву после их отмирания и перегнивания, поэтому, как правило, обеднения почвы питательными элементами не происходит.

Устанавливается их относительное природное равновесие, характерное для разных типов почв.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Пахотные земли

На пахотных же землях после уборки урожая в почву возвращается только часть поглощенных растениями минеральных элементов, например с корневыми и стерневыми остатками зерновых культур; при тереблении льна почти ничего не возвращается.

В связи с этим в пахотные почвы необходимо вносить минеральные удобрения, что позволяет возвратить в почву не только отчужденные с урожаем питательные элементы, но и сбалансировать их по количеству и соотношению для последующих сельскохозяйственных культур.

Тем самым обеспечить получение запланированного урожая. Для повышения эффективности удобрений и снижения их доз очень важно осуществлять агроприемы по регулированию почвенных процессов, направленных на накопление биологического азота и высвобождение из твердой фазы почв элементов питания в доступной для растений форме.

Кроме азота и зольных элементов, называемых в агрономической практике макроэлементами, в составе растений присутствуют микроэлементы, содержание которых составляет <0,001 % сухой массы тканей (В, Си, Со, Zn, Mo и др.). Они играют очень важную роль в обмене веществ растительного организма.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Валовое содержание элементов

В агрономических целях для характеристики условий питания растений определяют валовое содержание элементов в почве, ближайший для растений резерв доступных элементов и количество непосредственно усвояемых элементов из почвы.

Обеспеченность почв усвояемыми питательными элементами может быть выражена по отношению к разным сельскохозяйственным культурам в связи с тем, что они поглощают неодинаковое их количество. По этому признаку сельскохозяйственные культуры делят на три группы.

  1. Культуры невысокого выноса питательных элементов (зерновые).
  2. Культуры повышенного выноса (кормовые культуры, картофель).
  3. Культуры большого выноса (овощные, некоторые технические культуры, чайный куст, цитрусовые, виноград).

Азот и зольные элементы растения поглощают преимущественно в виде ионов из почвенного раствора и твердой фазы почв (Са2+,   Mg2+,   K+,   Na+,   NH4+,   Al3+,   Fe2+,  NO3,   HPO42–,   Н2РO4, SiO32–,  CI,  SO42– и др.).

Ранее мы писали про Солончаки

Питательные вещества растения извлекают избирательно из почвенного раствора физико-химической адсорбцией их на внешней поверхности корней или в результате контактного ионного обмена с твердой фазой почв.

Содержание доступных элементов питания растений в почвах варьирует в течение вегетационного периода в связи с изменением температуры, влажности, концентрации СO2 в почвенном воздухе, биологической активности почв.

Оно достигает максимума в европейской части России обычно в июле—августе; динамичность доступных элементов определяется также неравномерным их поглощением растениями.

Динамика почвенных и физиологических циклов доступных элементов питания не всегда совпадает, поэтому в критические периоды питания растений рекомендуют проводить подкормки удобрениями. Например, весенняя подкормка озимых зерновых культур азотными удобрениями.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Азот в почвах

Валовое количество азота в почвах составляет 0,1—0,5 %(от 2 до 10 т/га в пахотном слое 0—20см). В почвообразующих породах азота почти нет. Почвенный азот находится в основном в составе органического вещества — гумуса (1/20 –1/40 часть его процентного содержания).

Этот азот растениям недоступен. Однако в течение теплого времени года часть гумуса (1—2 % его содержания) разлагается микроорганизмами и азот высвобождается в доступной для растений форме.

Резервом доступного для растений азота является легкогидролизуемый азот. Его содержание в почвах составляет 2—5 % валового количества азота.

Это азот, который может быть минерализован в «ближайшее время» за счет наиболее разлагаемой части органического вещества почв (аминокислот и амидов). Однако по его количеству нельзя делать прогноз об обеспеченности растений азотом как элементом питания.

Основную роль в азотном питании растений играют минеральные формы азота: окисленная (NO3) и восстановленная (NH4+).

Рекомендуем прочитать: Сероземы

Минерального азота содержится в среднем от 50 кг/га в пахотном слое дерново-подзолистых суглинистых почв, до 100 кг/га и более — в черноземах, что составляет 0,5-1 % валового количества азота в почвах. За вегетационный период растениями усваивается около 40 % минерального азота.

Аммонийный азот образуется в почвах в результате жизнедеятельности аммонифицирующих гетеротрофных микроорганизмов, превращающих органический азот растительных и животных остатков, а также азот гумуса в NH4+.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Аммонийный азот

Находится в почвах в форме фиксированного глинными минералами аммония, входит в состав обменных катионов (0,3-0,4 % суммы катионов оснований), является компонентом почвенного раствора (5-6 мг/л).

Содержание доступного для растений аммония (обменного и водорастворимого) зависит от типа почв, численности аммонифицирующих бактерий и изменяется в динамике. Количество аммония практически не меняется при окультуривании почв, он довольно равномерно распределен по их профилю.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Нитратный

Образование нитратного азота в почвах обязано биологическому окислению NH3+(NH4+) до NO3 в результате микробиологического процесса нитрификации, осуществляемого двумя группами автотрофных бактерий.

Бактерии Nitrosomonas окисляют аммиак до азотистой кислоты, a Nitrobakter — азотистую кислоту до азотной. В настоящее время различают три группы нитратного азота в почве:

  • свободный,
  • подвижный,
  • адсорбированный (табл. 13).

Свободный нитратный азот находится в почвенном растворе (30-60 мг/л), может с ним передвигаться по профилю почв, хорошо поглощается корнями растений; часть нитратного азота подвергается денитрификации.

Подвижный нитратный азот — это адсорбированный NO3, легко переходящий в почвенный раствор из твердой фазы после высыхания почвы и последующего ее увлажнения.

Адсорбированный NO3 находится в твердой (коллоидной) фазе почв в обменном состоянии. Особенно активно нитратный ион обменивается на фосфат-ион. Подвижный и адсорбированный нитратный азот, находясь в почвах в виде поглощенных ионов, не подвергается вымыванию и денитрификации.

13. Содержание N—N03 в пахотных горизонтах основных типов почв Удмуртии разной степени окультуренности, мг/кг (Ковриго, Ирьянова, 1982)

Степень окультуренности почв

Свободный

(С) N-NO3

(в Н2О)

Подвижный

(В) N-NO3

(в Н2О)

Адсорбированный (A) N-NO3

(в 0,04 н. Na34)

Е (А+В+С)

А/С

А/В

Дерново-среднеподзолистая среднесуглинистая почва

Слабая

5,5

1,5

4,1

11,1

0,7

2,7

Сильная

13,2

1,5

5,1

19,8

0,4

3,4

Серая лесная тяжелосуглинистая почва

Слабая

1,8

0,8

4,0

6,6

2,2

5,0

Сильная

18,2

3,7

7,1

29,0

0,4

1,9

Дерново-карбонатная выщелоченная глинистая почва

Средняя

4,5

1,0

4,2

0,7

0,9

4,2

 

В лесных почвах процесс нитрификации подавлен; в них преобладает аммонийный азот. При распашке лесных почв процесс нитрификации активизируется, количество нитратного азота в пахотных почвах, как правило, преобладает над аммонийным.

Содержание нитратного азота в пахотных почвах зависит от типа почв, степени их окультуренности и состава глинных минералов. Об уровне возможной обеспеченности сельскохозяйственных культур свободным нитратным почвенным азотом судят по нитрификационной способности почв (табл. 14).

14. Уровень обеспеченности сельскохозяйственных культур азотом по нитрификационной способности дерново-подзолистых и серых лесных почв

(по Кравкову)

Культуры

Уровень обеспеченности, мг/кг N—N03

I – очень низкий

II – низкий

III – средний

IV – высокий

Зерновые

<5

5-8

8-15

>15

Корнеплоды и картофель

<8

8-15

15-30

>30

Овощные

<15

15-30

30-60

>60

Для расчета доз азотных удобрений для получения планируемого урожая сельскохозяйственных культур необходимо знать содержание минерального азота в почвах.

Г. Гамзиков (1981) предложил метод определения ориентировочных доз азотных удобрений по содержанию свободного нитратного и аммонийного азота в пахотном слое почв перед посевом (табл. 15). Однако в этом методе не учитывается количество подвижного и адсорбированного азота.

Тем не менее он имеет преимущество над другими методами определения доз азотных удобрений, при которых содержание минерального азота в почвах в расчет вообще не берется, а дозы определяют или, например, по соотношению выноса растениями из почвы с урожаем азота и фосфора (табл. 16), или с помощью других расчетов.

Это приводит к большому завышению доз азотных удобрений, снижает качество растениеводческой продукции, причиняет вред экологической обстановке.

15. Шкала обеспеченности растений легкоусвояемыми формами азота для почв Западной Сибири (Гамзиков, 1981)

Обеспеченность растений азотом

Интервалы содержания N в почвах, мг/кг, перед посевом

Потребность

растений в

N-удобрениях

Ориентировочные дозы внесения N, кг/га

N-NO3

(0-20 см)

N-NH3, N-NH4

(0-20 см)

кислотно-гидролизуемый

(0-20 см)

Очень низкая

<10

<10

<30

Очень сильная

60—90

Низкая

10-15

10-20

30-60

Сильная

45-60

Средняя

15-20

20-40

60-90

Средняя

30-45

Высокая

>20

>40

>90

Отсутствует

0

Почвы, на которых рекомендуют применение метода

Дерново-подзолистые, серые лесные, черноземы

Серые лесные и черноземы

Дерново-подзолистые

16. Вынос питательных веществ с урожаем зерновых культур (обобщенные показатели опытов по Удмуртии)

Культура*

Вынос с общим урожаем биомассы, кг на 100 кг основной продукции

N

Р2О5

К2О

Озимая рожь

2,8

1,2

2,4

Озимая пшеница

3,1

1,2

2,5

Яровая пшеница

3,4

1,2

2,3

Ячмень

2,7

1,1

2,3

Овес

3,1

1,3

2,9

Гречиха

3,0

1,5

4,0

Горох

6,2

1,7

2,3

*Основная продукция — зерно.

Наиболее полное представление о содержании минерального азота в почвах перед посевом дает сумма всех трех групп азота нитратного и аммонийного в слое 0—100 см в западных районах России.

0-60 см – в восточных районах европейской части России и 0-40 см – в Средней Сибири, так как в слоях этой мощности наблюдается большей частью миграция нитратов в суглинистых почвах. Из этих слоев наиболее вероятно также усвоение минерального азота корнями растений.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Фосфор в почвах

Фосфор является «дефицитным» элементом, так как в мире запасы фосфатного сырья (апатитов и фосфоритов) для производства фосфорных удобрений невелики. Наряду с этим содержание валового фосфора (Р2О5) в почвах низкое — 0,05-0,25 % (от 1 до 5 т/га в пахотном слое 0-20 см).

Основное его количество растениям труднодоступно, а фосфор удобрений сильнее, чем азот и калий, закрепляется почвами в неподвижные формы. Естественных путей возобновления запасов фосфора в отличие от азота в почвах нет.

Соединения фосфора в твердой фазе почв по доступности растениям подразделяются на пять групп (по Ф. В. Чирикову).

  1. I группа – наиболее доступные растениям, легко переходят в раствор под воздействием угольной кислоты – фосфаты щелочей и NH4, одно- и двузамещенные фосфаты Са и Mg, Mg3(PО4)2, часть Са3(РО4)2.
  2. II группа – ближайший резерв фосфора для питания растений – это Са3(РО4)2, часть фосфора фосфорита и апатита, часть АlРO4 и часть органических фосфатов; извлекаются раствором уксусной кислоты.
  3. III группа в основном представлена труднодоступными фосфатами железа и алюминия, фосфорита, апатита и фитина.
  4. IV группа – это фосфаты органического вещества почвы; непосредственно растениям недоступны.
  5. V группа – фосфаты невыветрившихся минералов; непосредственно растениям недоступны.

Содержание разных форм соединений фосфора в почвах по группам дано в таблице 17. Их количество зависит от типа почв, минералогического и гранулометрического составов, содержания гумуса, изменяется по генетическим горизонтам и в динамике.

Часть фосфора содержится в твердой фазе почв в адсорбированном состоянии, в почвенных растворах (0,1-0,3 мг/л) в виде фосфат-ионов (в основном Н2РO4), которые входят в состав групп фосфатов, наиболее доступных растениям.

17. Групповой состав фосфатов в почвах по Ф.В. Чирикову

Горизонт почвы

Глубина взятия образца, см

Валовой фосфор, мг/100г

Группы фосфатов, Р205*

I

II

III

IV

V

Дерново-среднеподзолистая среднесуглинистая почва

Ап

0-22

180

4,7

2,6

12,9

7,1

18,5

10,2

31,9

17,6

112,0

62,5

А2

22-30

81

0,5

0,6

6,6

8,2

20,8

25,7

12,9

15,9

40,2

49,6

В2

49-50

100

0,7

0,7

13,8

13,8

41,8

41,8

21,0

21,0

22,7

22,7

Серая лесная оподзоленная тяжелосуглинистая почва

Ап

0-22

167

0,6

0,3

9,7

5,8

20,7

12,4

38,7

23,2

97,3

58,3

А2

24-34

118

0,4

0,4

7,0

5,9

9,7

8,2

14,1

12,0

86,8

73,6

В1

42-52

116

0,6

0,5

24,7

21,3

16,0

13,8

12,3

10,6

62,4

53,8

*В числителе — в мг/100 г, в знаменателе — в % от валового.

Для агрономических целей определяют содержание подвижных фосфатов в почвах, т. е. условную сумму ближайшего резерва и непосредственно усвояемого фосфора растениями. Для этого применяют разные химические методы извлечения фосфора в зависимости от типа почв и их свойств.

По количеству подвижного фосфора проведена агрономическая группировка почв (табл. 18), которую используют для характеристики почвенных условий питания растений фосфором, составления картограмм и расчетов доз фосфорных удобрений.

18. Группировка почв по содержанию подвижных форм фосфора (для зерновых культур)

Группа почв*

Содержание

подвижных

форм фосфора

Количество Р2О5, мг/100 г почвы

по методу Кирсанова

(в 0,2 н. HCl) для

подзолистых,

дерново-подзолистых,

серых лесных почв

по методу Чирикова

(в 0,5 н.

СН3СООН) для

некарбонатных

черноземных почв

по методу Мачигина

[в 1%-ном(NH4)2CO3] для карбонатных черноземов,каштановых, бурых и сероземов

1

Очень низкое

<2,5

<2

<1

2

Низкое

2,5-5,0

2-5

1,0-1,5

3

Среднее

5-10

5-10

1,5-3,0

4

Повышенное

10-15

10-15

3,0-4,5

5

Высокое

15-25

15-20

4,5-6,0

* 2 – низкое содержание для I группы сельскохозяйственных культур невысокого выноса питательных веществ (зерновые культуры), 3 – низкое содержание для II группы сельскохозяйственных культур повышенного выноса (кормовые корнеплоды, картофель), 4 – низкое содержание для III группы сельскохозяйственных культур большого выноса (овощные, некоторые технические культуры, чай, цитрусовые, виноград).

 

Содержание подвижного фосфора (в кг/га) в пахотном слое почв определяют по формуле:

  • где а — количество подвижного фосфора,
  • Р2О5 мг/100 г (по методу Кирсанова или Чирикова);
  • dv — плотность пахотного слоя, г/см3;
  • hпах — мощность пахотного слоя, см.

За вегетационный период растения используют 5-10 % фосфора от содержания подвижных фосфатов в почвах, т. е. непосредственно усвояемый фосфор.

Количество усвояемого фосфора зависит от особенностей химического состава органической и минеральной частей почв, их кислотности, гранулометрического состава и может быть охарактеризовано степенью подвижности фосфора (содержанием Р2О5, мг/л, в вытяжке 0,03 н. раствором K2SO4).

Использование показателя степени подвижности фосфора в агрономической группировке почв дополнительно к содержанию подвижных форм фосфора дает более полную и правильную характеристику условий фосфорного питания растений (табл. 19).

19. Группировка почв по содержанию кислопгорастворимого фосфора в сочетании с показателями степени подвижности фосфора (для зерновых культур Среднего Предуралья) (Дерюгин, 1978)

Группа почв

Содержание

кислоторастворимого

фосфора

P,Os, мг/1 г почвы (по Кирсанову)

P2O5, мг на 1 л (по Карпинскому, Замятиной; степеньподвижности, в вытяжке 0,03 н. K2SO4)

2

Низкое

5-10

До 0,08-0,10

3

Среднее

0,10-0,16

4

Повышенное

0,16—0,22 и более

3

Среднее

10-15

До 0,10

4

Повышенное

0,10-0,16

5

Высокое

0,16—0,22 и более

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Калий в почвах

Валового калия (К2О) в почвах больше, чем азота и фосфора, вместе взятых, – 1,5-2,5 % (30-50 т/га в пахотном слое), что зависит от минералогического, гранулометрического составов и содержания гумуса.

Основное количество калия находится в труднодоступных для питания растения формах. Главным источником усвояемого калия служат обменно-поглощенные и водораствори-мосолевые его формы. Обменный калий составляет 0,5-1,5 % валового.

В почвенных растворах Нечерноземной зоны России содержится 30-40 мг/л калия (К2О). Количество обменного калия изменяется по генетическим горизонтам почв. Для агрономических целей разработана группировка почв по содержанию в почвах обменного калия (табл. 20).

Этой группировкой, так же как и по подвижному фосфору, пользуются для характеристики почвенных условий питания растений калием, для расчетов доз калийных удобрений и составления картограмм. Растения усваивают 10-20 % калия отчего обменных форм.

20. Группировка почв по содержанию обменного калия (для зерновых культур)

Группа почв* Содержание обменного калия Количество К20, мг/100 г почвы
по методу Кирсанова (в 0,2 н. НС1) для подзолистых, дерново-подзолистых, серых лесньк почв по методу Масловой (в 0,5 н. CH3COONH,) для подзолистых, дерново-подзолистых, серых лесньк почв

по методу

Чирикова

(в 0,5 н.

СН3СООН)

для некарбонатных

почв

по методу Мачигина

[в 1%-ном

(NH4)2СО3] для карбоонатных, черноземов,

каштановых,

бурых,

сероземов

1 Очень низкое <4 <5

<2

<5

2 Низкое 4-8 5-10

2-4

5-10

3 Среднее 8-12 10—15

4-8

10-20

4 Повышенное 12-17 15-20

8-12

20-30

5 Высокое 17-25 20-30

12-18

30-40

6 Очень высокое >25 >30

>18

>40

* 2 – низкое содержание для I группы сельскохозяйственных культур, 3 – низкое содержание для II группы, 4 –низкое содержание для III группы сельскохозяйственных культур.

 

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Микроэлементы в почвах

Микроэлементы (бор, марганец, медь, цинк, кобальт, молибден, йод и др.) играют важную биохимическую и физиологическую роль в жизни растений, а также животных и человека. Неблагоприятным является как недостаток микроэлементов в питании, так и их избыток.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Кобальт

Недостаток в кормах кобальта вызывает беломышечную болезнь у овец, недостаток йода в пище человека — заболевание щитовидной железы, цинка — кожные заболевания.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Бор

Недостаток в почве подвижного бора приводит к сердцевинной гнили корнеплода сахарной свеклы, а у капусты — к рыхлости кочана, недостаток меди — к недоразвитию метелки у овса и пустозерности.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Медь

Высокая концентрация в почве меди и низкая — цинка способствует заболеванию яблони розеточностью. Избыток в пище человека молибдена приводит к развитию подагры, бора в кормах — к пневмонии и нервным расстройствам овец, бора в почвах — к побурению листьев люцерны.

На содержание микроэлементов в почвах оказывают влияние прежде всего материнские (почвообразующие) породы, принадлежащие к тем или иным геохимическим провинциям. Геохимические провинции микроэлементов — это территории, на которых в поверхностных участках земной коры содержатся различные их количества (пониженные или повышенные).

Неодинаковое содержание микроэлементов в геохимических провинциях обусловлено происхождением материнских пород, включая их генетическую связь с определенными горными системами.

В результате породы различаются по составу и количественному соотношению минералов, содержащих оксиды, соли и другие соединения микроэлементов как примеси.

Читайте также: Болотные почвы

Известна приуроченность микроэлементов к первичным минералам: Со, Zn — к авгиту, биотиту, ильмениту, роговой обманке; Cu — к биотиту, апатиту, гранату, авгиту, полевым шпатам; В — к турмалину и т. д.

В географическом плане содержание микроэлементов в почвах и материнских породах европейской территории России в целом повышается в южном направлении от зоны подзолистых почв к каштановым. В Нечерноземной зоне отмечается повышение количеств меди, кобальта и марганца от центральных областей к Уралу.

В агрономических целях в почвах определяют валовые и подвижные количества микроэлементов, которые принято выражать в миллиграммах на килограмм (мг/кг) почвы.

Содержание микроэлементов для некоторых почв Среднего Предуралья приведено в таблице 21. Из таблицы видно, что только небольшая часть валовых запасов микроэлементов находится в доступной для питания растений форме.

21. Среднее валовое количество микроэлементов* и содержание подвижных форм** в пахотных горизонтах почв Среднего Предуралья,мг/кг (в вытяжках по Пейве-Ринькису) ( Кузнецов, 1990)

Почвы

B

Mn

Cu

Zn

Co

Mo

I

Дерново-подзолистыесупесчаные и песчаные

20

0,12

814

115

19

0,8

29

0,5

7

0,9

0,9

0,09

0,4

Не определяли

Дерново-подзолистые суглинистые

24

0,26

1355

135

20

1,7

34

0,58

12

1,9

1,3

0,15

0,8

Не определяли

Серые лесные оподзоленные суглинистые и глинистые

26

0,69

1314

131

23

4,1

39

0,49

11

2,8

1,4

0,19

1,4

Не определяли

Дерново-карбонатные глинистые

27

0,50

1460

148

25

3,3

44

0,26

13

2,7

1,6

0,14

3,6

Не определяли

Дерново-глеевые глинистые

25

Не определяли

768

Не определяли

28

5,2

30

Не определяли

10

1,4

1,3

0,13

Не определяли

Аллювиальные луговые суглинистые

26

0,87

1164

238

24

6,4

35

0,39

10

1,5

1,2

0,13

1,3

Не определяли

* Числитель; ** Знаменатель.

 

В разных типах почв распределение валовых и подвижных форм микроэлементов по профилю неодинаковое, что обусловлено особенностями состава и свойств почв, и является результатом воздействия процессов почвообразования.

Один из важных показателей поведения микроэлементов в почвах—величины их элювиально-аккумулятивных коэффициентов (ЭАК): отношение валового содержания элементов в верхних горизонтах почв к содержанию в почвообразующих породах.

Величины коэффициентов зависят от почвообразовательных процессов, активности биогенной аккумуляции микроэлементов, реакции почв, насыщенности их основаниями, типа водного режима и других факторов.

В таблице 22 показаны величины элювиально-аккумулятивных коэффициентов микроэлементов для некоторых почв Среднего Предуралья.

22. Элювиально-аккумулятивные коэффициенты (ЭАК) микроэлементов в пахотных почвах Среднего Предуралья (Кузнецов, 1990)

Почвы

В

Мп

|   Си

Zn

Со

Мо

J

Дерново-подзолистые

супесчаные и песчаные

1,25

1,87

1,04

1,34

0,64

0,88

0,8-1,4

Дерново-подзолистые

суглинистые

0,82

2,01

0,73

0,92

0,90

0,71

1,2-4,0

Серые лесные оподзоленные суглинистые и

глинистые

0,86

1,77

0,94

0,83

0,74

0,86

1,3-24,1

Дерново-карбонатные

глинистые

1,08

2,25

1,37

0,89

1,18

0,70

1,3-11,1

Дерново-глеевые

глинистые

0,85

1,56

0,94

0,79

0,89

0,70

Не опре-

деляли

В образовании этих почв значительное участие принимали элювиальные процессы, поэтому у многих почв коэффициенты ЭАК меньше единицы. Это означает, что содержание валовых форм микроэлементов в таких почвах ниже, чем в почвообразующих породах.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Марганец

Марганец во всех почвах имел положительную величину коэффициента накопления, так же как йод, благодаря своей высокой биогенности. Величина ЭАК больше единицы у дерново-карбонатных и дерново-подзолистых легких почв.

В дерново-карбонатных почвах аккумулятивные процессы микроэлементов преобладают над элювиальными благодаря карбонатному геохимическому барьеру нижних горизонтов, а в легких дерново-подзолистых почвах из-за низкого содержания микроэлементов в почвообразующих породах даже незначительная их аккумуляция в гумусовом горизонте отражалась положительно на величине ЭАК.

Показатели содержания подвижных микроэлементов в почвах используют в агрономической практике для определения необходимости использования микроудобрений. В таблице 23 приведена группировка по обеспеченности растений подвижными формами микроэлементов, которую широко используют в агрономической практике.

23. Группировка почв do обеспеченности растений микроэлементами (по Важеыину)

Обеспеченность Содержание подвижных микроэлементов, мг/кг почвы (в вытяжках по Пейве-Ринькису)
В Мп Си Zn Со Мо
I группарастений (невысокого выноса микроэлементов)
Низкая <0,1 <15 <0,5 <0,3 <0,3 <0,05
Средняя 0,1-0,3 15-30 0,5—1,5 0,3—1,5 0,3-1,0 0,05—0,15
Высокая >0,3 >30 >1,5 >1,5 >1,0 >0,15
II группа растений (повышенного выноса микроэлементов)
Низкая <0,3 <45 <2,0 <1,5 <1,0 <0,2
Средняя 0,3-0,5 45-70 2,0-4,0 1,5-3,0 1,0-3,0 0,2-0,3
Высокая >0,5 >70 >4,0 >3,0 3,0 >0,3
III группа растений (высокого выноса микроэлементов)
Низкая <0,3 <100 <5,0 3,0 <3,0 <0,3
Средняя 0,3-1,0 100-150 5,0-7,0 3,0-5,0 3,0-5,0 0,3-0,5
Высокая >1,0 >150 >7,0 >5,0 >5,0 >0,5

Следует иметь в виду, что потребность сельскохозяйственных культур в тех или иных микроэлементах, как и в макроэлементах, различная. Поэтому группировка почв составлена для трех групп растений по выносу микроэлементов из почвы.

  1. К первой группе культур невысокого выноса относятся зерновые хлеба, кукуруза, зерновые бобовые, картофель.
  2. Ко второй группе относятся культуры повышенного выноса микроэлементов: корнеплоды, овощи, травы (бобовые, злаковые, разнотравье), подсолнечник, плодовые.
  3. К третьей группе высокого выноса относятся сорта интенсивного типа, а также сельскохозяйственные культуры первой и второй групп, возделываемые в условиях высокого агрофона, когда применяют повышенные дозы макроудобрений, осуществляют хороший уход за растениями, а также при орошении.

Химический состав почв. Основные питательные элементы для растений. Микроэлементы

Регулирование режима питания растений

Самыми мощными приемами регулирования питания растений макро- и микроэлементами является внесение органических и минеральных удобрений, а также приемы обработки почв, так как они активно воздействуют на режим влажности и содержание почвенного воздуха.

Большое значение имеет регулирование реакции почв с помощью известкования кислых и гипсования щелочных почв. При этом изменяются величины катионной и анионной обменной поглотительной способности почв, подвижность макро- и микроэлементов, направленность биологических и биохимических процессов и т. д.

Эффективны агроприемы по увеличению емкости поглощения почв в результате внесения природных адсорбентов, таких, как цеолиты, бентониты, вермикулит, а также глинование песчаных почв, регулирование их температурного режима, проведение мероприятий по борьбе с плоскостной водной эрозией.

 24. Модели плодородия для некоторых типов почв восточной части европейской территории России* (Ковриго, 1989)

Гранулометрический состав

Оптимальные показатели свойств пахотного слоя почв перед посевом

Гумус, %

рНкCl

S мгэкв/100 г

V, %

P2O5 мг/100 г

K2O мг/100 г

D, г/см3

Водопрочные

агрегаты >0,25 мм, %

Подвижные микроэлементы, мг/кг

Дерново-подзолистые почвы

Песчаный 1,6-2,0 5,5-6,0 8-10 75-85 10-11 12-13

1,3-1,4

До 5

B 0,3-0,5

Супесчаный 2,0-2,5 5,5-6,0 10-15 75-85 11-12 12-13

1,3-1,4

5-10

Mn 45-70

Суглинистый 2,5-3,0 5,5-6,0 15-20 80-90 12-13 13-15

1,2-1,3

30-35

Cu 2-4

Zn 1,5-3

Co 1-3

Mo 0,2-0,3

Светло-серые лесные оподзоленные почвы

Суглинистый

3-4

5,5-6,0

20-25

80-90

12-13

13-15

1,2-1,3

35-40

тоже

Серые лесные оподзоленные почвы

Суглинистый

5-6

5,5-6,5

30-35

85-90

13-15

15-17

1,1-1,2

45-50

тоже

Темно-серые лесные оподзоленные почвы

Суглинистый

8-9

6,0-7,0

40-45

90-95

13-15

15-17

1,0-1,1

45-50

Тоже

* Разработанные модели плодородия обеспечивают получение урожайности зерновых культур на дерново-подзолистых почвах 3,0—3,5 т/га, а на серых лесных почвах — 3,5—4,0 т/га зерновых единиц.

 

Одно из условий получения высоких урожаев сельскохозяйственных культур — создание комплекса благоприятных свойств почв для роста и развития растений.

Нельзя ограничиваться только регулированием пищевого режима, так как свойства почв оказывают друг на друга прямое или косвенное влияние.

Разработанный на основе научных данных обязательный комплекс свойств и режимов почв, обеспечивающий получение определенного урожая, называется моделью плодородия.

В качестве примера в таблице 24 приведены основные показатели модели плодородия для дерново-подзолистых и серых лесных почв восточной части европейской территории России. По содержанию гумуса предусматривается региональная стабилизация его природного содержания в почвах.

Ещё по теме: Дерновые почвы

В таблице 24 указаны усредненные уровни оптимальных свойств почв. Некоторые показатели могут быть иными. Например, обменная кислотность может быть выше, если степень насыщенности почв основаниями будет более высокой.

Подвижного фосфора может содержаться меньше, чем приведенные в таблице данные, если будет выше степень подвижности фосфора по Карпинскому—Замятиной и т. д.

Создание комплекса благоприятных свойств почв согласно модели плодородия является только частью работы агронома.

Для получения гарантированных урожаев необходимо также качественно осуществлять весь комплекс агротехнических мероприятий по обработке почв, борьбе с сорняками, вредителями и болезнями растений; посев должен быть проведен в лучшие сроки, хорошими семенами; уборка должна быть своевременной, без потерь и т. д.

Контрольные вопросы и задания

  1. Какие элементы преобладают в почвах и почему?
  2. Назовите формы соединений азота, фосфора и калия в почвах. Какова их доступность растениям?
  3. Как охарактеризовать почвы по содержанию минерального азота и использовать эти показатели в агрономических целях?
  4. Как использовать градации почв по содержанию подвижного фосфора и обменного калия в агрономической практике?
  5. Какова роль микроэлементов в жизни растений, животных и человека?
  6. Как использовать в агрономической практике показатели содержания в почвах подвижных микроэлементов?

Понравилась статья? Поделиться с друзьями: